



Cambridge, MA June 1<sup>st</sup>, 2017

# **Process Modeling: where to next?** 2040 visions of Process Systems Engineering

**Costas Pantelides** 





- Process Modeling: where are we now?
- Process Modeling: where to next ?
- Concluding remarks



# Where are we now?

© 2017 Process Systems Enterprise Limited

#### Dimensions of process modeling





© 2017 Process Systems Enterprise Limited

#### Process Modeling Key drivers

PSe

Use validated models that are predictive over wide ranges of design & operating parameters increase reliability/reduce risk in model-based decisions



Leverage modeling investment across process lifecycle → ensure consistency, reduce cost of model development & maintenance

#### Integrated gas production & processing networks Basrah Gas Company





D. Aluma, N. Thijssen, K.M. Nauta, C.C Pantelides, N. Shah "Optimize an integrated natural gas production and distribution network" *Gas Processing News*, October 2016.



#### Integrated gas production & processing network Top-level model



**PSe** 

### Integrated gas production & processing network

#### Second-level models







# Where to next ?

© 2017 Process Systems Enterprise Limited

### Process modeling: where to next? Increasing the efficiency of the modeling process

#### Model-based Engineering



**Business Objectives** 

## Model-based Engineering

**Business Deliverables** 

### Model-based Engineering





Analysis of business objectives Formulation of modeling approach Model construction Correctness testing

Model validation

Model-based calculations for process analysis & optimization

Application deployment

**Business Deliverables** 

#### Model validation





### Model validation Characterization of fundamental physical phenomena

- Most process models contain parameters that are not known a priori
  - thermodynamics
  - heat & mass transfer
  - hydrodynamics
  - reaction & other kinetics

. . . . . . . . . . . . . . . .

- Typically estimated from experimental data
- Experimentation almost always the bottleneck in terms of time & cost
  - design experiments carefully
  - extract maximum amount of information from this exercise



#### Model validation Characterization of fundamental physical phenomena



- Most process models contain parameters that are not known a priori
  - thermodynamics
  - heat & mass transfers
  - hydrodynamics`
  - reaction & other kinetics

. . . . . . . . . . .

- Typically estimated from experimental data
- Experimentation almost always the bottleneck in terms of time & cost
  - → design experiments carefully
  - extract maximum amount of information from this exercise

#### ALTERNATIVE: multiscale modeling





Cocrystal lattice energy

**CrystalOptimizer** 

landscape in CrystalPredictor/

#### Ibuprofen model in SAFT-γMie



CFD model of agitated solid/liquid reactor for drug substance manufacturing

#### Multiscale modeling: an *old* "new paradigm"! So what are the challenges for 2040 ?



#### **1.** Scope of fine-scale models

 Do they cover the physical phenomena of interest to process modeling?

#### **2.** Accuracy of fine-scale models

 Is the accuracy of characterization of these physical phenomena comparable to what can be obtained by estimation from experimental data?

#### 3. Efficiency of multiscale integration

 Can problems of practical significance be solved? What, if anything, canProcess Systems Engineering contribute to these?

Process Systems Engineering methodologies



#### Multiscale modeling: a not (yet) successful example <u>Prediction</u> of solubility for process modeling

#### Fine-scale modeling: Ab initio crystal structure prediction



BUT... currently ab initio available methods

- not (yet) applicable to molecules of practical significance
- not (yet) accurate enough

### Process modeling: where to next? Beyond manufacturing



#### Dimensions of process modeling





© 2017 Process Systems Enterprise Limited

#### Pharmaceutical systems



# **Decisions & Disturbances**

#### **Critical Process Parameters (CPPs)**



# **Objectives & Constraints**

**Product KPIs: Critical Quality Attributes (CQAs)** 

© 2017 Process Systems Enter Process KPIs: Economics, Safety, Operability, Environmental Impact

#### Pharmaceutical systems



# **Decisions & Disturbances**

#### **Critical Process Parameters (CPPs)**



# **Objectives & Constraints**

**Product KPIs: Critical Quality Attributes (CQAs)** 

© 2017 Process Systems Enter Process KPIs: Economics, Safety, Operability, Environmental Impact

#### **Systems-based Pharmaceutics**

#### The vision





Use an <u>integrated system model</u> to quantify effects of CPPs & disturbances on CQAs, process economics, operability, safety
– incorporate all available knowledge, identify gaps
Maximize efficiency of new drug development

### Systems-based Pharmaceutics

Process Systems Engineering tools & workflows





# Process modeling: where to next?

From point calculations to global process understanding

**PSe** 



### Model-based process system analysis

#### **Current practice**





#### Model-based process system analysis Global system behavior in an uncertain world





#### Model-based process system analysis Global system behavior in an uncertain world







Global sensitivity indices of output response(s) with respect to input factors

### Global System Analysis Some interesting questions





# Relation with optimization-based methodologies?



### Process modeling: where to next? In conclusion...



### Process modeling: What next?



#### **Potential major developments**

- Multiscale modeling
  - accelerating model development via reduced reliance on experimentation
- Combined process & product performance modeling
  - taking direct account of end-use product performance in manufacturing process design & operation

#### Global system analysis

 extracting maximum insight from modeling investment

#### Impact of enabling infrastructure

#### High-Performance Computing

- ensuring scalability of existing types of calculation
- enabling new types of calculation
- Cloud Computing
  - High-Performance Computing
    - see above
  - Data accessibility
    - much reduced effort for collection of data underpinning models
    - elimination of most manual data entry
    - a <u>data-centered</u> world: model-based calculations effect data transformations

#### Profound implications on architecture & design of process modeling software





**Questions?** 

c.pantelides@psenterprise.com





#### Model-based automation





© 2017 Process Systems Enterprise Limited

#### Process modeling technology Original vision: multipurpose process modeling environments





#### Process modeling technology A new paradigm

# PSe

