

Ka Ming NG

Department of Chemical and Biomolecular Engineering The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong

Acknowledgment: Kelvin Fung, Warren Seider, Danny Lewin, Bob Seader, Soemantri Widagdo, and Rafiqul Gani

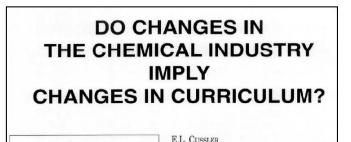
2040 Vision of Process Systems Engineering, MIT, June 1-2, 2017

Part I George – My Professor, My Mentor

Time	Relationship	Turning Point
1973-1976	Professor and	 Introduced Prof Alkis
	Academic Advisor	Payatakes at the University
		of Houston to me as my
	UG, University of	graduate advisor to work on
	Minnesota	flow in porous media.
1989 Spring	Sabbatical advisor	 Helped consolidate my
	MIT	interest in PSE to this date
2001 March	СТО	 Showed us how to organize
		product and process design
	Corp Sci & Tech	around a business vision
	Advisor, Mitsubishi	
	Chemical	

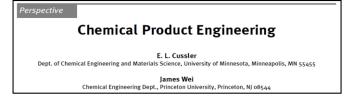
Part II

Setting Product Design in Motion


Cussler, Chem. Engr. Edu.

• G. Stephanopoulos

"Invention and Innovation in a Product-Centered Chemical Industry: General Trends and a Case Study,"


AIChE 55th Institute Lecture (2003).

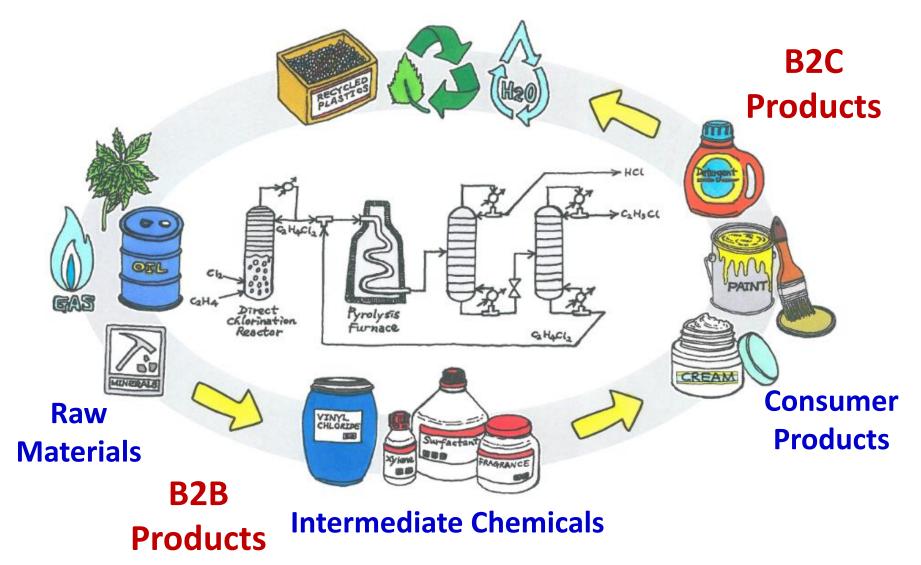
University of Minnesota • Minneapolis, MN 55455

Cussler & Wei, AIChE J. 2003

Hill, AIChE J. 2004

Perspective

1999


Edward L. Cussler, Institute

Product and Process Design for Structured Products

> Michael Hill Unilever Research & Development - Edgewater, 45 River Road, Edgewater, N J 07020

The Chemical Supply Chain

Sustainability

Challenges and Trends in Industry

- For private chemical companies, it is hard to secure sufficiently high profit margin by manufacturing commodity chemicals (B2B) alone, partly because of the gyration in raw material cost and the competition from state-owned companies.
- To survive and to prosper, they have to focus on B2C products that have entry barriers and sufficiently large market size for the effort to be worthwhile.
- Specifically, they have to sell new B2C products (if marketing channels are available) or link up with companies that sell B2C products - EV batteries, solar panels, touch panels, smart windows, printed electronics, and so on.

Consumer-Centered Products

New products that provide "a sustainable condition that is comfortable for people, society, and the Earth, transcending time and generations." Kaiteki Institute, MCHC.

All other chemical companies have been heading in the same direction!

Metric	Full Year 2013
Total U.S. patent applications	1,755**
U.S. patents granted	1,041
New products commercialized	1,753
Sales from new products*	\$10,061
% Sales from new products*	28%
Total R&D expense	\$2,153
R&D as % of sales	6%

* Sales from new products launched within past four years

** Includes legacy Danisco and excludes any Performance Coatings

DuPont Data Book

B2B vs. B2C Products

	B2B (Commodity)	B2C (Consumer Centered)	
Nature of	Simple or complex	Novel molecules; formulated products;	
products	molecules	functional products; devices	
Product design	Primarily purity	Ingredients and structures	
Product lifecycle	Decades	Month / Year	
Team	Primarily chemists and chemical engineers	A multidisciplinary team of marketing personnel, financial specialists, lawyers, electronic engineers, mechanical engineers, chemists and chemical engineers.	
Financial goal	Cost reduction	New sources of revenue	
Unit operations	Traditional – distillation, crystallization, extraction, absorption, adsorption, etc.	Unconventional – granulation, milling, nanomization, etching, lamination, physical vapor deposition, inkjet printing, etc.	
Technical focus	Process design and optimization	Improved product performance and quality	
Knowledge	Well-structured	Fragmented so far	

A Historical Note: Mass Transfer Operations by Robert E. Treybal 1968

1. The Mass-transfer Operations 1

PART ONE DIFFUSION AND MASS TRANSFER

- 2. Molecular Diffusion in Fluids 15
- 3. Mass-transfer Coefficients 38
- Diffusion in Solids 77
- 5. Interphase Mass Transfer 92

PART TWO

Preface

GAS-LIQUID OPERATIONS

125

- 6. Equipment for Gas-Liquid Operations 126
- 7. Humidification Operations 176
- 8. Gas Absorption 220
- 9. Distillation 281

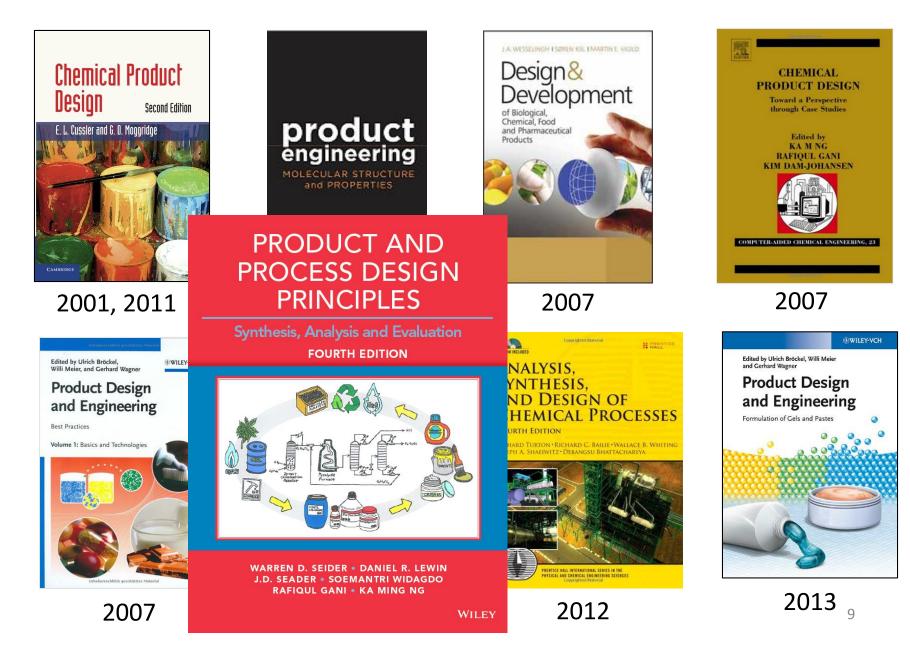
PART THREE LIQUID-LIQUID OPERATIONS

- 10. Liquid Extraction 407
- PART FOUR
- PART FOUR SOLID-FLUID OPERATIONS
- 11. Adsorption and Ion Exchange 491
- 12. Drying 569
- 13. Leaching 628

PART FIVE THE LESS CONVENTIONAL OPERATIONS 677

14. The Less Conventional Operations 678

Index 699 1


CHAPTER FOURTEEN THE LESS CONVENTIONAL OPERATIONS

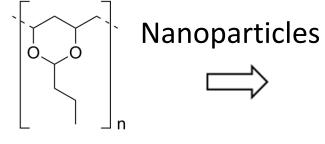
The operations considered in this chapter involve, with a few exceptions, solid-fluid contact of various kinds. While some have been applied industrially, they are not commonly used and in most cases their technology is relatively undeveloped. Only a brief, qualitative discussion will be given, to indicate their field of usefulness and some of the problems they entail.

FRACTIONAL CRYSTALLIZATION

489 The common crystallization process is a solute-recovery operation rather than a fractionation, such as the crystallization of a nonvolatile solid from a solution with a volatile solvent. If it is done by progressively cooling the saturated solution, mass transfer from the bulk solution to the crystal surface and transfer of sensible heat and heat of solution in one fashion or another are involved. In most cases, solute and solvent are insoluble in the solid state, and this gives rise to an equilibrium diagram of the sort shown in Fig. 14.1.

Product Design Texts

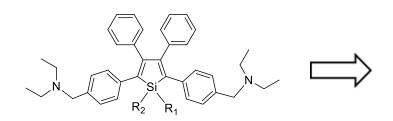
Part III A Personal View of Product Design Research

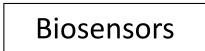

Multidisciplinary Hierarchical Product Design Framework Phases and Job Functions

Job function	Phase I Product Conceptualization	Phase II Detail Design & Prototyping	Phase III Product Manufacturing & Launch
Management	Project management		
Business and Marketing	Market study Product launch		Product launch
Research and Design	Product design	Prototyping	
	Process design		
Manufacturing	Feasibility study	Engineering design	Plant startup
Finance and Economics	Economic analysis		

Job function	Phase I Product Conceptualization	Phase II Detail Design & Prototyping	Phase III Product Manufacturing & Launch
Management	 Project management Set product development objective-time chart Secure the necessary human, financial and physical resources 	 Identify service issues Recruit salespersons Recruit production personnel Monitor project progress and spending 	 Consider business alliances Manage design changes
Sales and Marketing	Market study Collect consumer preferences Identify product attributes Study competing products	 Develop marketing plan <i>Identify a family of products</i> Test marketing 	 Product launch Develop promotional and launch materials Firm up key buyers or sales channels
Research and Design	 Product design Choose ingredients and base-case formula Identify product structure Measure physical and chemical properties of product Specify product technical requirements Identify technical challenges and opportunities 	 Prototyping Fabricate prototype Characterization of prototype Stability tests Performance tests Study product safety 	 Continue product improvement Investigate related products Consider development of technology platform
	 Process conceptual design 	 Process design Synthesize manufacturing process 	 Continue process optimization
Manufacturing	 Feasibility study Estimate product cost Identify sources of raw materials Investigate patent issues Study environmental impact 	 Engineering design Perform scale-up studies Procure necessary equipment Perform engineering design Economic analysis Perform make-buy analysis 	 Plant startup Obtain regulatory approvals Plant startup Develop inventory control scheme
Finance and Economics	 Calculate internal rate of return and other financial metrics Evaluate opportunity cost 	 <i>Facilitate make-buy analysis</i> Evaluate all tax issues 	Update economic returnManage cash flow

Classification of Products – Molecular (1)

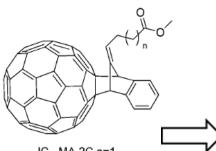

• Molecules



IR blocking and soundabsorbing auto safety windshield

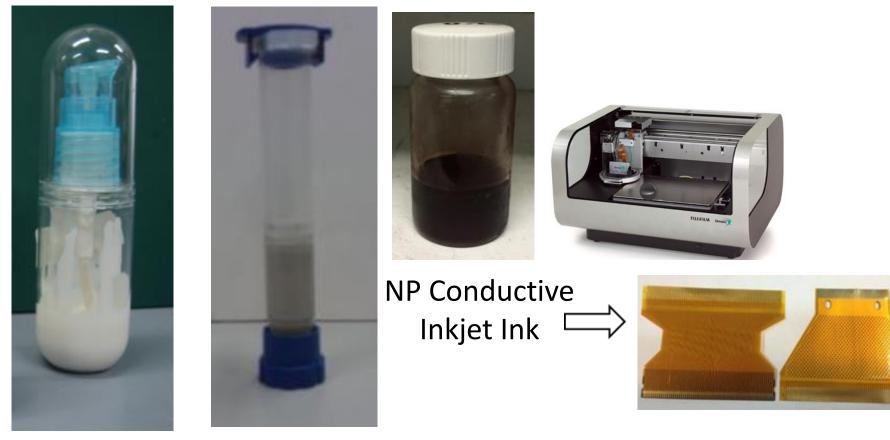
Polyvinyl butyral

Functional Molecules



Aggregation induced emission molecule

Nanomaterials

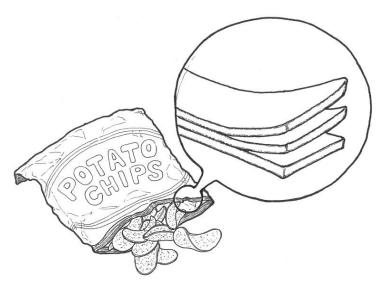

IC₆₀MA-2C n=1 IC₆₀MA-3C n=2 IC₆₀MA-4C n=3

Fullerene and its derivatives

Organic photovoltaic

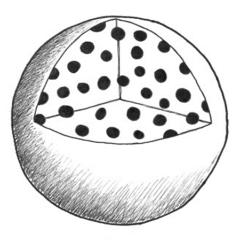
Formulated Products (2)

Formulated products are obtained by mixing selected components together to get the desired product attributes.



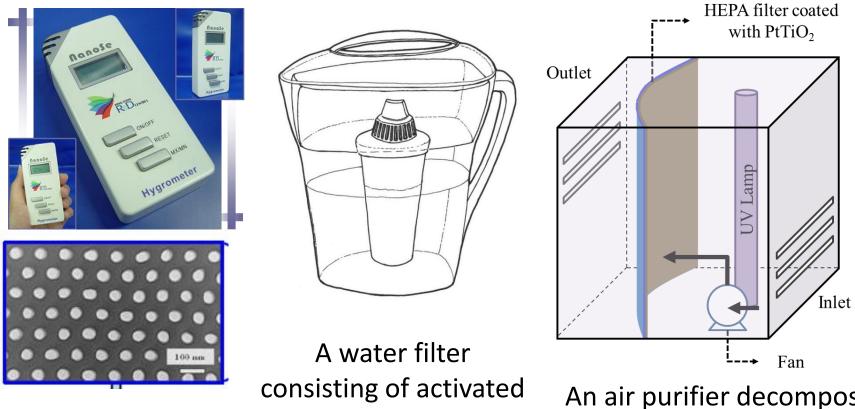
Skin Cream

Die Attach Adhesive PCB


Functional Products (3)

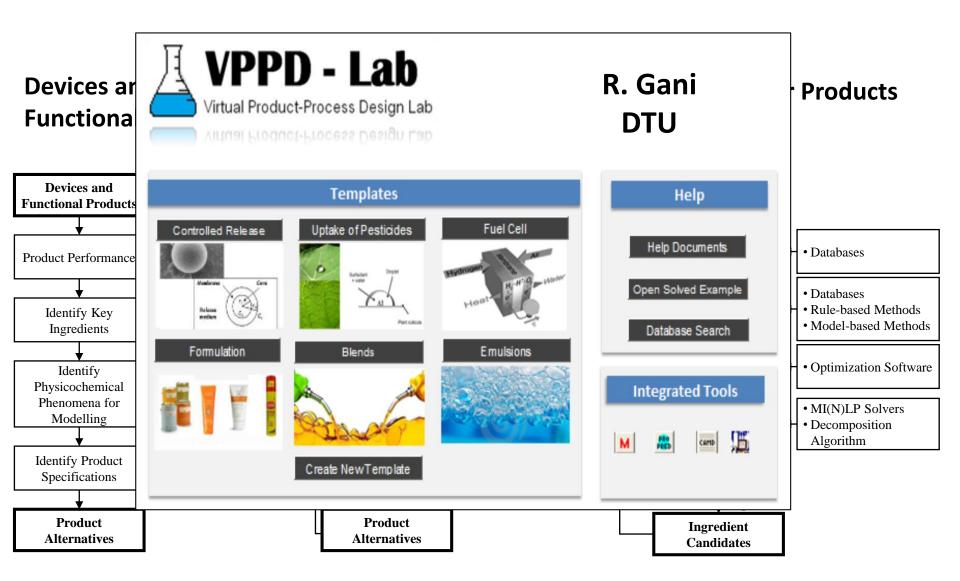
Functional products are those chemical products made up of materials that perform a desired function

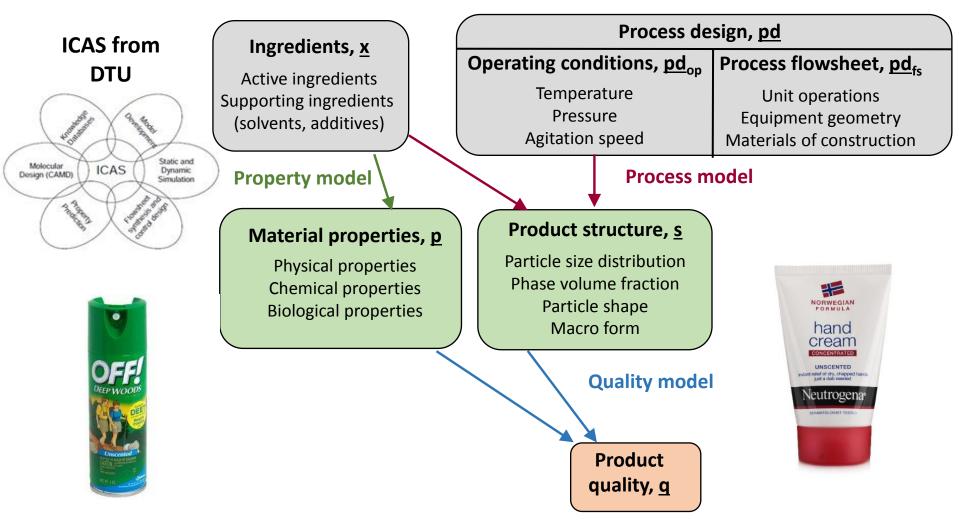
Food packaging is made up of three main layers – outside print layer, adhesive layer and inside barrier layer.



Nano ZnO used in transparent sunscreen Controlled release herbicide granule

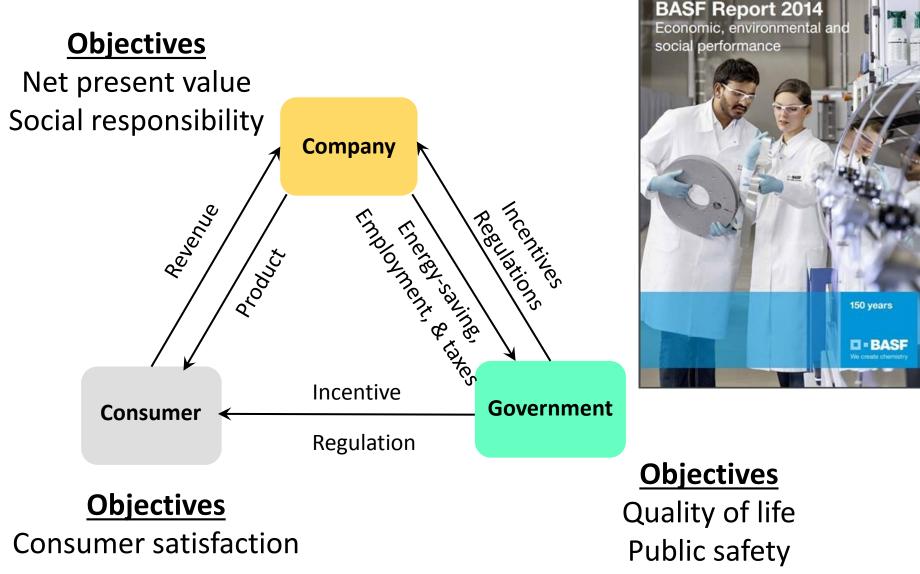
Chemical Devices (4)


Chemical devices are those chemical products that achieve certain objectives by performing reactions, fluid flow, heating/cooling, and/or separations.


A humidity sensor with nanopores

carbon and ion exchange resins

An air purifier decomposes VOCs using UV-TiO₂catalysts Systematic approaches, procedures, methods and tools for designing the entire spectrum of chemical products are being developed.



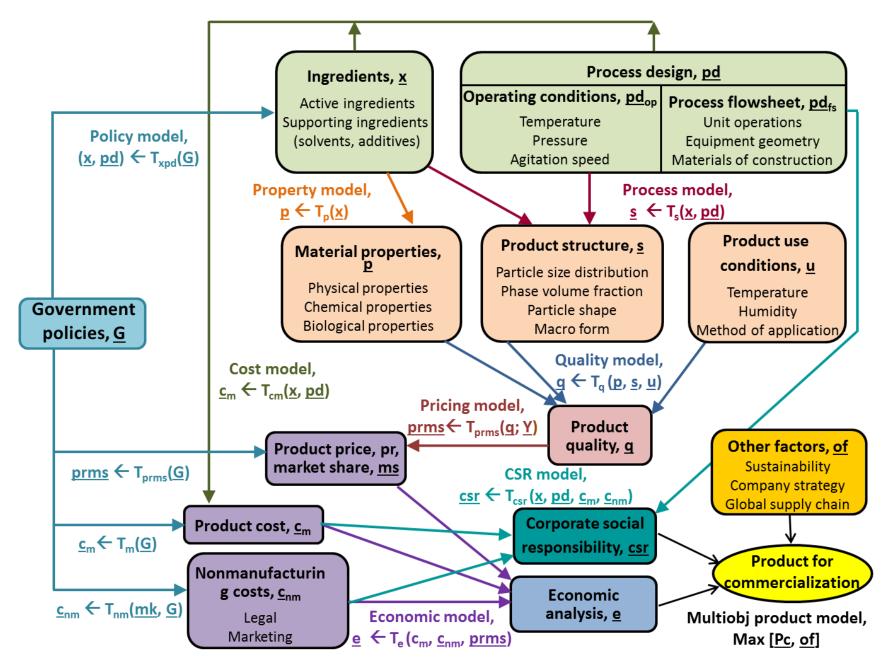
Methods and Tools Supporting Product Design Procedures

How do we know that the identified product can make a profit? What is the product cost and price? Does it satisfy consumer preference and company strategy? Does it follow government policies and regulations?

Company-Consumer-Government Relationships

Competitiveness of society

The Grand Product Design Model The optimal product that satisfies multiple objectives


Max [e, CSR, and so on]

subject to

 $\underline{q} \leftarrow T_{a}(\underline{p},\underline{s},\underline{u})$ (Quality model) $\underline{p} \leftarrow T_{p}(\underline{x})$ (Property model) $\underline{s} \leftarrow T_{\underline{s}}(\underline{x},\underline{pd})$ (Process model) $\underline{c}_m \leftarrow T_{cm}(\underline{x},\underline{pd})$ (Cost model) $\underline{P}_{prms} \leftarrow T_{prms}(\underline{q};\underline{Y})$ (Pricing model) $\underline{e} \leftarrow T_{e}(\underline{c}_{m}, \underline{c}_{nm}, \underline{P}_{prms})$ (Economic model) <u>CSR</u> \leftarrow T_{CSR}(x, pd, <u>c</u>_m, <u>c</u>_{nm}) (Corp. Soc. Resp. model) $\underline{c}^{L} \leq \underline{f}(\underline{p}, \underline{s}, \underline{u}, \underline{x}, \underline{pd}, \underline{q}, \underline{c}_{m}, \underline{c}_{nm}, \underline{P}_{prms}) \leq \underline{c}^{U}$ (Model parameter constraints)

These transformation relations, T, are obtained from model-based methods, rule-based methods, databases, tools and experiments.

The Grand Product Design Model (Ctd)

Part IV The Vista of Product Design in 2040

Evolution of the Chemical Engineering Curriculum

Subject	Present	2040	Remarks
Unit Operations	Distillation, extraction, and so on	Coating, aggregation, etching, breakage, solids formation,	Progress in solids processing has been slow
Process Design	Process synthesis and simulation	Product synthesis and simulation (Bio, materials, and sustainability)	Prediction of product microstructure is in its infancy
Transport Phenomena	Flow in pipes and packed beds	Transport in functional products and devices	Need a new BSL focusing on products
Mathematics	Methods of solution	Use of product design tools	In progress: CFD, gPROMS, Comsol, Mathlab
Thermodynamics	Prediction of VLE, SLE, and so on	Prediction of properties such as wettability, UV absorptivity, etc.	Many research opportunities in formulation science

Expansion of the Chemical Engineering Profession

- The chemical engineers (bachelor's degree graduates) with a broaden outlook and entrepreneurship will more likely participate in market sectors other than petrochemical – auto, agricultural, packaging, electronics, renewal energy, and so on.
- They will actively participate in product formulation and will operate plants with unconventional processing techniques.
- Many will be involved in designing products that can be sustained; e.g. use of aqueous binder in EV Li-ion batteries can greatly simplify the recycle process.
- They will contribute more directly to meeting societal needs comfort and convenience for consumers, CSR, and so on

Product design will help integrate faculty focusing on basic sciences and propel chemical engineering to a new height (with new textbooks) by 2040!

To: Prof G. Stephanopoulos From: UM student 1976 Re: Final design report

