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Professor George Stephanopoulos

• Research inspiration & 

impact on my career

• Decision making under 

uncertainty in 2040



G. Stephanopoulos

Synthesis of process flowsheets: an adventure 
in heuristic design or a utopia of mathematical 
programming?

R.S.H. Mah and W. Seider (Editors), 
Foundations of Computer-Aided Chemical 
Process Design, 2, Engineering Foundation, 
New York (1981), p. 439

Research Inspiration #1



Research Inspiration #1



Research Inspiration #2 

 March 1995 – Imperial College London
 External PhD examiner for my first graduating 

PhD student – Dr. Katerina Papalexandri

“Flexibility and Controllability in the synthesis 

of mass/heat integrated process systems”

 George offered encouragement/support and 

valuable advice



Research Inspiration #2 

Encouragement to work on:

 Process Synthesis

 Process Intensification

 Interactions of 

design/control/operability

 Decision-making under uncertainty



Research Inspiration #2 

Valuable advice (for life):

 Research question is the key

 Have an area that you publish regularly (& 

you become well-known )

 Have a “risky” area with long-term impact

Importance of:

WhatHow

Why

How

What

Strategy/Philosophy is critical to 

research innovation

(First - get the Big Picture right!)

From “why” to “how” to “what”:
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• Research inspiration & 
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Decision-making under uncertainty in 2040

1980 2017 2040

How far have we advanced between 1980-2017?



Decision-making under uncertainty in 2040

1980 2017

Advances in:

 Computing power

 ×10E08 faster! 

2040
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Decision-making under uncertainty in 2040

1980 2017

Advances in:

 Computing power

 ×10E08 faster!

 Simulation 

 ×10E04 bigger problems!

2040

How far have we advanced between 1980-2017?

Simulation of flows in 

industrial compressors*

*Gourdain, N., Sicot, F., Duchaine, F., Gicquel, L. Large eddy simulation of flows in 

industrial compressors:A path from 2015 to 2035 (2014) Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 



Decision-making under uncertainty in 2040

1980 2017

Advances in:

 Computing power

 ×10E08 faster!

 Simulation 

 ×10E04 bigger problems!

Similar trends in:

 Optimization

 Data Analytics

2040

How far have we advanced between 1980-2017?
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A word-usage relative frequency plot in Google Books

*Data is adopted from Google Ngrams

Decision-making under uncertainty in 2040
How far have we advanced between 1980-2017?

https://books.google.com/ngrams
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*Data is adopted from Google Ngrams

• Big Data

• Data driven

• Model free

• Derivative free

• Data analytics

• Uncertainty quantification

• Decision making under 

uncertainty

• Robust Optimization

• Stochastic Programming

Decision-making under uncertainty in 2040
How far have we advanced between 1980-2017?

A word-usage relative frequency plot in Google Books

https://books.google.com/ngrams


 Model

 Equation

 Variable

 Derivative

-free

-free

-free

-free

?

?

?

?

Decision-making under uncertainty in 2040
Adventure in Big Data Analytics or Opportunity for Model-

based Optimization?

Myths & misconceptions?

Perception or Reality?



2. Can Causality be fully expressed through data only?

 For example, biomedical applications

1. Can we innovate / propose new designs with data only?

 Role of discrete 0-1 choices?

3. Can we tackle decision making under uncertainty with data 

only?

 Two-stage stochastic/robust optimization

Decision-making under uncertainty in 2040
Adventure in Big Data Analytics or Opportunity for Model-

based Optimization?



Motivating “thought” experiment
Two-stage decision-making under uncertainty

Application Areas:

1. Design and Scheduling:

• Design decisions: “here-and-now”

• Scheduling decisions: “wait-and-see”

• Demand: uncertainty

2. Scheduling and Control:

• Scheduling decisions: “here-and-now”

• Control decisions: “wait-and-see”

• Process disturbances: uncertainty

3. Design and Control

4. Facility location and 

transportation

5. Dynamic pricing and 

revenue management

6. Energy generation and 

distribution

7. Project management

“here-and-now” decisions: Must be taken prior the realization of the uncertainty

“wait-and-see” decisions:   Can be taken after the realization of the uncertainty



x: “here-and-now” decisions

y: “wait-and-see” decisions

u: uncertainty
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Motivating “thought” experiment
Adjustable Robust Optimization



Model-Based Approaches:

1. One key approach – Assume linear decision rules:

 Set y as an affine function of the uncertainty – simplifies the problem.
 Can be solved as Static Robust Optimization 

2. Generalized decision rules through multi-parametric programming:

 Solve the lower level problem multi-parametrically considering u and x as parameters

 Arrive to a set of (exact) affine decision rules valid for the whole feasible space of u
and “here-and-now” decisions x.

 Use M-POP to get the exact global solution

𝒚 =

𝑸𝟏𝒖 + 𝑷𝟏𝒙 + 𝒒𝟏 𝒊𝒇 𝑮𝟏𝒖 + 𝑯𝟏𝒙 ≤ 𝒉𝟏
𝑸𝟐𝒖 + 𝑷𝟐𝒙 + 𝒒𝟐 𝒊𝒇 𝑮𝟐𝒖 + 𝑯𝟐𝒙 ≤ 𝒉𝟐

⋮
𝑸𝒏𝒖 + 𝑷𝒏𝒙 + 𝒒𝒏 𝒊𝒇 𝑮𝒏𝒖 + 𝑯𝒏𝒙 ≤ 𝒉𝒏

Motivating “thought” experiment
Adjustable Robust Optimization x: “here-and-now” decisions

y: “wait-and-see” decisions

u: uncertainty

𝒚 = 𝒒 + 𝑸𝒖



Data-Driven Approaches:

3. Surrogate Modeling and Optimization within ARGONAUT
• Development of surrogate approximations that correlate input data to the 

problem objective.

• Use of derivative-based global optimization techniques to solve the 

optimization problem.

4. Machine Learning via Support Vector Machines
 Used to express y as an explicit function of x and u.
 𝛜-SVR: Supervised learning algorithm.
 Kernel functions transform nonlinear data to a higher dimensional space where 

there is a linear explanation of the input data.
 Kernel function used:

,   Parameters: 𝛾 (& C, ϵ)

Motivating “thought” experiment
Adjustable Robust Optimization

𝑒−𝜸|𝑥−𝑥𝑖|
2

x: “here-and-now” decisions

y: “wait-and-see” decisions

u: uncertainty



Sampling and Output Handling – Method 3

Latin 

Hypercube 

Design (LHD)

# of inputs

Bounds

Surrogate Modeling

and Optimization

(ARGONAUT)

Motivating “thought” experiment
Adjustable Robust Optimization

“Unsupervised”
• Solution via GAMS
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“Supervised”
• Solution via B-POP
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x: “here-and-now” decisions

y: “wait-and-see” decisions

u: uncertainty



Sampling and Output Handling – Method 4

Latin 

Hypercube 

Design (LHD)

# of inputs

Bounds

Machine Learning 

via

Support Vector 

Machines

Motivating “thought” experiment
Adjustable Robust Optimization
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“Supervised”
• Solution via B-POP
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Instances:

Instance 1 Instance 2 Instance 3

Linear/Non-Linear Linear Linear Non-linear

# of “here-and-

now” variables
2 - continuous

3 - continuous

3 - binary

1 - continuous

2 - binary

# of “wait-and-

see” variables
2 - continuous 9 - continuous 3 - continuous

# of sampling 

points used by the 

data-driven 

techniques

41 – Unsupervised

21 - Supervised

728 – Unsupervised

488 - Supervised

244 – Unsupervised

124 - Supervised

Motivating “thought” experiment



Results:
Value of the objective function:

Instance 1 Instance 2 Instance 3

Exact 451 30.536 7,320

Affine rules 451   33,680 ----

Motivating “thought” experiment

𝒚 =

𝑸𝟏𝒖 + 𝑷𝟏𝒙 + 𝒒𝟏 𝒊𝒇 𝑮𝟏𝒖 + 𝑯𝟏𝒙 ≤ 𝒉𝟏
𝑸𝟐𝒖 + 𝑷𝟐𝒙 + 𝒒𝟐 𝒊𝒇 𝑮𝟐𝒖 + 𝑯𝟐𝒙 ≤ 𝒉𝟐

⋮
𝑸𝒏𝒖 + 𝑷𝒏𝒙 + 𝒒𝒏 𝒊𝒇 𝑮𝒏𝒖 + 𝑯𝒏𝒙 ≤ 𝒉𝒏

𝒚 = 𝒒 + 𝑸𝒖

Affine rules: Exact – Multi-parametric approach:



Results:
Value of the objective function:

Instance 1 Instance 2 Instance 3

Exact 451 30.536 7,320

Affine rules 451   33,680 ----

“Unsupervised”

(ARGONAUT)
860 Infeasible Infeasible

“Supervised”

(ARGONAUT)
452.8 Infeasible 8,150

Motivating “thought” experiment

LHD

# of inputs

Bounds

“Unsupervised”

“Supervised”

x, u

x

Surrogate Modeling

and Optimization

(ARGONAUT)
objective

objective

x

optimal

Surrogate Modeling and Optimization (ARGONAUT):



Results:
Value of the objective function:

Instance 1 Instance 2 Instance 3

Exact 451 30.536 7,320

Affine rules 451   33,680 ----

“Unsupervised”

(ARGONAUT)
860 Infeasible Infeasible

“Supervised”

(ARGONAUT)
452.8 Infeasible 8,150

 Approximations (such as Affine rules) may be sub-optimal

 Affine rules cannot be derived for non-linear problems – Instance 3

 Data-driven techniques (could) arrive to near optimal solutions only for 

continuous problems with “Supervised” data

 “Unsupervised” data resulted in infeasible solutions for mixed-integer 

problems

Motivating “thought” experiment



Results of the Machine Learning method:

“Unsupervised” “Supervised”
𝛾 C ϵ RMSE 𝛾 C ϵ RMSE

Instance 1
y1 - - - - 0.0078 1024 0.1 0.0848

y2 - - - - 0.0625 8 0.1 0.0318

Instance 2

y11 0.0313 1024 0.1 0.1013 0.1250 4 0.1 0.0051

y12 0.0313 1024 0.1 0.0981 0.0625 64 0.1 0.1029

y13 0.0313 512 0.1 0.1101 0.0625 512 0.1 0.0738

y21 - - - - 0.0020 512 0.1 0.0916

y22 0.0313 512 0.1 0.1117 0.1250 16 0.1 0.0475

y23 0.0625 512 0.1 0.0996 0.0039 512 0.1 0.0259

y31 0.0313 512 0.1 0.1036 0.1250 128 0.1 0.1148

y32 0.0313 1024 0.1 0.1001 0.1250 32 0.1 0.0073

y33 0.0313 1024 0.1 0.0930 0.0625 32 0.1 0.0235

Instance 3
y1 - - - - 0.2500 32 0.1 0.0939

y2 - - - - 8 128 0.1 0.5275

y3 - - - - 0.1250 32 0.1 0.2857

Parameters of the function of y in terms of x and u Root-Mean-Square Error

Motivating “thought” experiment

LHD

# of inputs

Bounds

Machine Learning 

via

Support Vector 

Machines

“Unsupervised”

“Supervised”

x, u

x

y*

u*, y*
y as a 

function 

of x and u



“Unsupervised” “Supervised”
𝛾 C ϵ RMSE 𝛾 C ϵ RMSE

Instance 1
y1 - - - - 0.0078 1024 0.1 0.0848

y2 - - - - 0.0625 8 0.1 0.0318

Instance 2

y11 0.0313 1024 0.1 0.1013 0.1250 4 0.1 0.0051

y12 0.0313 1024 0.1 0.0981 0.0625 64 0.1 0.1029

y13 0.0313 512 0.1 0.1101 0.0625 512 0.1 0.0738

y21 - - - - 0.0020 512 0.1 0.0916

y22 0.0313 512 0.1 0.1117 0.1250 16 0.1 0.0475

y23 0.0625 512 0.1 0.0996 0.0039 512 0.1 0.0259

y31 0.0313 512 0.1 0.1036 0.1250 128 0.1 0.1148

y32 0.0313 1024 0.1 0.1001 0.1250 32 0.1 0.0073

y33 0.0313 1024 0.1 0.0930 0.0625 32 0.1 0.0235

Instance 3
y1 - - - - 0.2500 32 0.1 0.0939

y2 - - - - 8 128 0.1 0.5275

y3 - - - - 0.1250 32 0.1 0.2857

 Using “Unsupervised” data - we cannot form expression for y

 Using “Supervised” data - expressions for y can be obtained for all cases 

(and are accurate)

Results of the Machine Learning method:

Motivating “thought” experiment



 Data are important and useful provided that ..

 The right type of data ..

 The right amount of data …

 The right timing of data …

 “Model-free”, “Variable-free”, “Equation-free” or “derivative-free” - a “myth”

 A ‘model’ is always generated  (with ‘variables’, ‘equations’ and use of 

‘derivatives’!! – within an algorithm)

 Innovation/Design/Novel type of decisions cannot be obtained only by data!

 Knowledge is essential

“Intelligent” data is the key

Decision-making under uncertainty in 2040 –
some remarks



 Importance of
 Algorithms

 Hypothesis testing

 Big-Data Analytics
 “virtual reality” modeling

 “training” the algorithm (to create ‘intelligence’)

 Model-based Optimization
 “reality” modelling

 “training” the model (to create ‘intelligence’)

 Optimization is central in both!

(Parameter estimation)

 Hybrid approach (?)

Decision-making under uncertainty in 2040 –
some remarks

Data Models SolutionAlgorithms



Professor George Stephanopoulos

Happy 70th 

Birthday!

&

Happy Retirement!

Thank you for being such an Inspirational Intellectual 

Leader to all of us!!


