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Professor George Stephanopoulos gﬂ?}%

Giant and Intellectual Leader in Process Systems Engineering
NAE Citation:

For contributions to the research, industrial practice,

and education of process systems engineering,

and for international intellectual and professional leadership.

G. Stephanopoulos, A. W. Westerberg, ,,The use of Hestenes' method of multipliers
to resolve dual gaps in engineering system optimization,” JOTA, 15, 285-309 (1974)
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Mathematical Programming

MINLP: Mixed-integer nonlinear programming

minZ = f (X, y)
st. h(x,y)=0
9(xy)=<0

xeR", ye{01}"

f(x):R" - R, h(x):R" > R",g(x):R" - R®

MILP: f, h, g linear
LP:f, h, g linear, only x

NLP: £ h, g nonlinear, only x
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in Chemical Engineering
Product Design

Process Synthesis

Production Planning
Process Scheduling

Supply Chain Management

Process Control

Parameter Estimation

LP, MILP, NLP, MINLP, Optimal Control

Applications of Mathematical Programming

y(tHkit)

N

t1 t t+l ..

t+k t+N

Major PSE contributions: theory, algorithms and software,

new problem representations and models
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Predicting the future is difficult

Example Energy Crisis

1970s energy crisis - caused by the peaking of oil production in major industrial
nations (Germany, United States, Canada, etc.) and embargoes from other producers

1973 oil crisis - caused by OAPEC oil export embargo by Arab oil-producing states,
in response to Western support of Israel during the Yom Kippur War

1979 oil crisis - caused by the Iranian Revolution

Who would have thought in the 70°s about shale oil/gas, about the US
becoming energy independent and rebirth of US chemical industry?
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Roger W.H. Sargent CLHV

Integrated Design
and Optimization of Processes

Although we are in sight of a truly integrated approach to the design of
complete processes, a great deal of work remains to be done. With the
need for more sophisticated analysis of larger complexes, it is more than
ever necessary to join hands with those working in the fieids of control

ngineering, operational resear numerical analysis, and computer
Sgience.

R. W. H. Sargent
Imperial College of Science and Technology, University of London, London, England

Visionary paper in 1967 on:

Process design and integration with control, reliability
Process models: steady state, dynamics

Strategy of process calculations

Computational methods for optimization

Sargent, R.W.H., “Integrated Design and Optimization of Processes,”
Chemical Engineering Progress, Volume: 63 Issue: 9, Pages: 71-78 (1967).
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History Classical Optimization

minZ = f(x)
XeR"
Calculus
Newton (1673) Lbni 1673)
Lagrange minZ = f ()
multipliers st. h(x)=0
XeR"

Lagrange (1811)
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Evolution of Mathematical Programming

LP: Linear Programming Kantorovich (1939), Dantzig (1947)
ming=c'x
s.t. Ax<b
x>0

ming = f(x) P 2
t (x) <0 an
N Xge);%n< iﬂ

IP: Integer Programming R. E. Gomory (1958)

ming=c'y it
s.t. Ay<b
g yeZ™
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- Convexification of Mixed-Integer Linear Programs
Lovacz & Schrijver (1989), Sherali & Adams (1990),
Balas, Ceria, Cornuejols (1993)

- Branch and Bound  Beale (1958), Balas (1962), Dakin (1965)

- Cutting planes Gomory (1959), Balas et al (1993) o f\f\)
- Branch and cut Johnson, Nemhauser & Savelsbergh (2000) 3 LP (splex) based
NP-hard!

- MILP codes: CPLEX, GUROBI, XPRESS Bob Bixby (1992)

M
- Modeling Systems GAMS, AMPL, AIMMS  Rog. Kendrick, Meeraus (1988)
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MILP Electric Power Planning: ERCOT (Texas)

Multiscale temporal/spatial
+ 30 year time horizon

« Data from ERCOT database

+ Regions:
+ Northeast (midpoint: Dallas)
«  West (midpoint : Glasscock County)
« Coastal (midpoint: Houston)
« South (midpoint : San Antonio)

« Panhandle (midpoint : Amarillo)
- A
E o A

mm {1 \F

Lara, Grossmann (2017)
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Generation capacity
=
558 &8

[=]

Generation capacity - total ERCOT

1 2 3 4 > b /f 8 9 1011 12 13 14 15 16 1/ 18 19 20 21 22 23 24 1> 16

years

20 18 29 30

mwind
Wng-cc
mng-ct

* 3330% increase in photo-voltaic {(pv) capacity
+ 24% increase in wind capacity @
= 38% increase in natural gas combined-cycle (ng-cc) capacity @

MILP Model

Discrete variables: 414,120
Continuous variables: 682,471
Constraints: 1,369,781

Solver: CPLEX

CPU Time: 3.4 hours

Objective value: $223.93 billion
Optimality gap: 0.4%
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- NLP algorithms: QRF/’\IQ

Reduced gradient Murtagh, Saunders (1978) § f .
LY S
Successive quadratic programming (SQP) Han 1976; Powell, 19774}

Interior Point Methods Byrd, Hribar, Nocedal (1999) %

4
Wiichter, Biegler (2002)ﬂ
- NLP codes:

MINOS, CONOPT, SNOPT, KNITRO, IPOPT

- Convex optimization: Rockefeller (1970) &

Boyd (2008) CVX

- MINLP algorithms

Branch and Bound method (BB) H [g
Ravindran and Gupta (1985) Leyffer and Fletcher (2001) ) e

Generalized Benders Decomposition (GBD) Geoffiion (1972) ﬁ
Outer-Approximation (OA) -
Duran & Grossmann (1986), Fletcher & Leyffer (1994)

: ;ﬁ@“ 3
Extended Cutting Plane (ECP) Westerlund and Pettersson (1995) =§

- MINLP codes:
DICPOPT, SBB, Bonmin, FiIMINT
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Global Optimization Software

| .
oBB (4djiman, Androulakis, Maranas & Floudas, 1996; 2000) i -

BARON (Ryoo & Sahinidis, 1995, Tawarmalani and Sahinidis (2002)) &

OA for nonconvex MINLP (Kesavan, Allgor, Gatzke, Barton (2001) - )

Couenne (Belotti & Margot, 2008)

GLOMIQO, ANTIGONE Floudas and Misener (2011)

- Optimal Control Cuthrell, Biegler (1987) H
Pantelides, Sargent, Vassiliadis (1994) hj

12
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Stochastic programming Birge & Louveaux (1997)

gﬂg\g

A Ruszczynski, A Shapiro (2002)

Robust optimization Rekalitis (1975), Ben-Tal, Nemirovski (1998) ¥

Bertsimas, Sim (2004)

Parametric Programming Dua & Pistikopoulos (2000)
/f

- Decomposition Techniques

Lagrangean decomposition Benders decomposition
Geoffrion (1972) Guinard (2003) @ Benders (1962), Magnanti, Wong (1984)
Complicating Constraints ML Complicating Variables
Xj X2 X3
y Xj X2 X3
A
D,
D
1 A Dz
D
2 D3
D;

Stephanopoulos, Westerberg (1974) E%

Dynamic programming
Bellman (1953), Bertsekas (1995) %

L —L —

Multistage systems
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Rich History of Mathematical Programming

Challenges in mathematical programming
and existing paradigms

1. Formulation models: equation based

2. Solution models:
Exponential complexity in combinatorial problems
Non-robust convergence in nonlinear problems

3. Data handling:
Interface of models with data
Uncertainty optimization

4. Results interpretation:
Limited indicators (active constraints, dual prices)

Carnegie Mellon
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Challenge Formulation Models:

Equation based
Possible direction:

Develop higher level formulations, complex models
(e.g. equations and logic)

Carnegie Mellon 15



@,n . Generalized Disjunctive Programming (GDP) QRFZE:R

LTI TFERING
Raman and Grossmann (1994) (Extension Balas, 1979)

Motivation: Facilitate modeling discrete/continuous problems

min Z =Y c, + f(x) Objective Function
st. r(x)<0 Common Constraints
i ij | Disjunction
OR operator —— Y g. (x)<0 ke K Constraints
s, c, =7, Fixed Charges
Q (Y ) = true Logic Propositions
xeR'c , € R' Continuous Variables
Y, € {true, false } Boolean Variables

f(x):R" >R, r(x):R" > R™,g(x):R" > R°

16
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Strip-packing Problem Q%\,Q

: EHI:INI BN problem statement: Hifi M. (1998) Fit a set of rectangles with width w; and length I;onto a
large rectangular strip of fixed width W and unknown length L. The objective is to fit all
rectangles onto the strip without overlap and rotation while minimizing length L of the strip.

(0,0) (x;¥)

v/

v

l i

< L —_ ? X
] Set of rectangles
MinZ=L (SP-GDP)
S.t. L2x+1, i€N
xi+hisx| |x+h<xi| [yi-hiZzy| Lyi-h2yi
05x,5U;-1, i€ N WeEN, 1<
nSy,SW i€N
xf, V,€ER ieN
Yy Y2y, ¥y, Y€ {True, False} LjEN, i<j
17
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Challenge Solution Models:

Exponential complexity in combinatorial problems
Non-robust convergence in nonlinear problems

Possible directions:

Advances in computing
Towards polynomial complexity
New modeling frameworks with guaranteed convergence

Carnegie Mellon 18



Moore’s Law: doubling processing power every two years Qﬁ/?\l[l

o The accelerating pace of change...

Agiculturl _ [aooo | Industrial _ roo | Ught o
Rovolution | years | Rovolution — hults -

e ... and exponential growth
in computing power...

Computer technology, shown
here climbing dramatically
by powers of 10, is now
progressing more each

hour than it did in its

entire first 90 years
LY g
[

o
o furmormss
00
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3 ou it LL
g = Pontun
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L0

Quantum Computing 102 faster current chips!

i =10y
o Computation systems that use quantum-mechanics
/. Today’s implementations are very problem specific mainly
/ in combinatorial optimization, but results are promising.
e.g. evolutionary algorithm

Carnegie Mellon 19



New theory for combinatorial optimization?

Unsolved problem in theoretical
computer science: is P=NP?

\ NP-Hard

3

NP-Hard

P=NP=
NP-Complete

If P=NP integer programming and global optimization
are solvable in polynomial time!

Carnegie Mellon
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Basic premise: physics not generic equations  Amundsen, Swaney (2008)

Macroscopic Microscopic
Dissipation
T LE
Coupllngs thermodynamics
S5 transport
Reactions kinetics
Conservation Flux Potential
Transport Coupling Reaction
Al o rk
Species vi = Ji 4 ply - > L Virk Al
Energy vE = JE 4 pFv o= - AE
Momentum VP = JP 4 pPv aP - AP
Strain vV = JV 4+ pVy av - XY
Euler-Lagrange eqns. v A Solution composite
variational formulation ol +Y | -A | =0 model via homotopy

Primals are the fluxes and the duals are the adjoint potentials

Theoretical result: Theorem
Homotopy path points exist and remain bounded
=> Homotopy path guaranteed to converge to a solution

Carnegie Mellon

Canonical Primal-Dual Formulation for Process Models
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Challenge Data handling:
Interface of models with data
Uncertainty optimization

Possible direction:
Integration of Data Analytics and Decision

Making

Carnegie Mellon
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Q%D\IQ How to anticipate effects of uncertainty?

Approaches to Optimization under Uncertainty

u, 1 %
If deterministic uncertainty set
U
Robust Optimization: Ensure feasibility over uncertainty set
Ben-Tal & Nemirowski. (2000) S
Uy
If probability distribution function Stage 1 Recours
Stochastic Programming: Expected value, recourse actions Here & now U Wait & see
| ]

Birge & Louveaux, (1997)

Chance Constrained Optimization: Ensure feasibility with level confidence

Prékopa (1973) +

Carnegie Mellon
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Integration of Data Analytics

and Decision Making

Uncertainty

2011 2012 2013 2014

Data
Variability » Historical

e Forecast

50 100 150 200

pe

Carnegie Mellon

Predictive
Analytics

Stads .ical

Medels

Uncertainty

Quantification

Calfa, Grossmann (2015)

Prescriptive
Analytics

Decision-Making Model

¢ Parameters
¢ Functions

> max /(z) |
s.t. h(a:) —0 L__:l
g(z) <0

e Stochastic
e Robust
e Reliable

24
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Challenge Interpretation Results:
Limited indicators (active constraints, dual prices)

Possible directions:

Al/Constraint Programming techniques

Carnegie Mellon
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CENTER

Al/Constraint Propagation-based techniques
for analysis results

ANALYZE
A computer-assisted analysis system for mathematical programming models and solutions

For LP not only What if ? but Why? (Why solution value what it is)

Rule-based system (alla expert systems)

Greenberg, H., The ANALYZE rulebase for supporting LP analysis, Annals of Operations Research 65 (1996), 91-126.

Techniques for Integrating Qualitative Reasoning and Symbolic Computation in
Engineering Optimization, A. M. AGOGINO, S. ALMGREN, 2007

Irreducible infeasible sets (IISs)

Identifying subset of constraints responsible for infeasible solutions

Applicable to linear programs (LPs), nonlinear programs (NLPs),

mixed-integer linear programs (MIPs), mixed-integer nonlinear programs (MINLPs)

Bounds propagation based on BARON as in constraint programming

Puranik, Y. and N. V. Sahinidis, Deletion presolve for accelerating infeasibility diagnosis in optimization models, 1
NFORMS Journal on Computing, accepted, 2017

Carnegie Mellon
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o ~
~-  Future vision by 2040

Large-scale Global Multi-objective Nonconvex Nonlinear
Discrete-Continuous Stochastic Dynamic Differential-Algebraic

Optimization Problem

Easy to formulate, and solved reliably and efficiently,

Explanation of results that are easily understood with interactive input

Carnegie Mellon
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Congratulations George for your
70t Birthday and for
Outstanding Contributions!

We wish you Happy Retirement!
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